您现在的位置是:网站首页 > 情感婚姻

2019湖南遴选行测数量关系:轻松四步,稳解交替合作类问题

本站2019-08-0747人围观
简介 在行测考试中,工程问题都是一类高频考点,而工程问题中有一类小题型交替合作,很多人又爱又恨,爱得是这类题几乎都可以严格按照四个步骤轻松快速地解出答案,恨的是自己居然不知道是哪四步。 今天中

2019湖南遴选行测数量关系:轻松四步,稳解交替合作类问题

在行测考试中,工程问题都是一类高频考点,而工程问题中有一类小题型交替合作,很多人又爱又恨,爱得是这类题几乎都可以严格按照四个步骤轻松快速地解出答案,恨的是自己居然不知道是哪四步。

今天中公教育专家就将这一做题步骤和大家分享。

首先,我们下来看看交替合作这类题型有什么特征。

如一项工作由甲做1个小时,再交由乙做1个小时,再交由甲做1个小时……如此下去,直到完成全部工作。

形如这类由多个主体轮流去做(不同时参与)的问题就叫交替合作,其本质上是一个周期循环问题,如上述描述就是每两个小时一个周期,每个周期内完成的工作都是一样的。 其次,当我们能判断一道题是交替合作问题后,就需要知道这类题的四步解题步骤:第一步,将总量设为特殊值,一般设为已知量的最小公倍数,确定各个主体的效率。

第二步,寻找最小循环周期,并确定周期内工作量。

第三步,作除法,用第一步中的总量除以第二步中的周期内工作量,确定周期数及工作剩余量。 第四步,分析剩余量所需时间,计算结果。 再次,应用这四个步骤到具体的题目中,不断练习,这类问题就迎刃而解了。

【例】某项工作甲单独做需要8小时,乙单独做需要10小时,现按照甲先做1小时后,乙接替甲做1小时,甲再接替乙做1小时……这样做完成部工作需要多少时间小时小时48分钟小时小时30分钟【答案】B。

中公解析:先判断这题属于周期循环交替合作问题,然后只需按照既定的步骤即可解出:第一步:设工作总量为40(8和10的最小公倍数),则甲的效率为5,乙的效率为4;第二步:最小循环周期为2小时,且周期内工作量为9(5+4=9);第三步:40÷9=4……4,商4表示的是有4个周期即8小时,余数为4表示还剩余4份工作;最后,中公教育专家提醒大家,任何方法和技巧都需要反复练习才能熟练运用,真正在考场上成为拿分利器。